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Abstract

We consider a recent proposal of Morikawa® that oscillations in the Hub-
ble constant may be driven by coherent oscillations of an ultra-low mass
scalar field (soft-boson). If the mass density of the Universe is dominated
by soft-boson coherent oscillations then there will be an oscillating Hubble
constant with period m/m = L = 20Mpc/(m/1073°eV) and amplitude
3H/4m = 0.04 L/(100h~! Mpc). We explore the particle physics implica-
tions and observational consequences of this proposal, which might have
relevance for the regularity in the red shift distribution recently seen in a

deep pencil beam survey.
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Consider a massive, minimally coupled real scalar field ¢ with Lagrangian density
Ly = (8,9)*/2 — m?¢?/2. (1)

If the scalar field is spatially homogeneous, then its stress-energy tensor takes on the
perfect fluid form:?

T} = diag [p, —p, —p, —p}; (24)

p= %(;’52 + %mz‘ﬁz, p= %q&z _ %mz(ﬁz; (28)

where the metric tensor g,,, = diag[1, —R?, —R? — R?|, R(t) is the cosmic scale factor,

and units are chosen so that i = ¢ = 1. The equation of motion for ¢ in a Robertson-

Walker background space-time is

$+3H$ +m?¢ = 0; (3a)

d(R%) _ _ d(R%)
where H = R/R is the expansion rate (Hubble parameter). Eq. (3a) which is the
Klein-Gordon equation in an expanding space-time and Eq. (3b) which is the first

law of thermodynamics are equivalent.

If we completely ignore the friction term due to the expansion of the Universe
(H — 0 or m > H), we see that ¢ oscillates with angular frequency m. Moreover,
the average of the pressure p over one cycle is zero (just a statement of the virial
theorem for a harmonic oscillator).® However, the average is achieved by the pressure
oscillating between —p and p. That is, if we write the equation of state as p = vp, v

varies between —1 and 1!

Equation (3b) implies that the density of a perfect fluid with pressure p = vp
evolves as p o« R~3(1+7) which gives the familiar results: p « R~2 for v = 0; p «x R™*
for ¥ = 1/3; p o const for v = —1; and the less familiar result that p oc R~® for
4 = 1. Thus, as the scalar field oscillates, its energy density decreases by a power of

R that varies between 0 and —6, which on average is equal to —3. As we shall see
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shortly, such pressure oscillations can induce oscillations in the expansion rate of the

Universe.

Let us assume that the mass density of the Universe is dominated by that of the
scalar field oscillations—that is, the dark matter in the Universe exists in the form of
coherent scalar field oscillations—then the expansion rate is given by

87 Gp
B = ——; (4)

where for simplicity we have assumed a flat Robertson-Walker model. The solution
to the equation of motion for ¢ is simple to write down in the two limits m <« H and
m > 3H.2 In the limit m <« 3H, where the oscillation time of the scalar field is longer
than the Hubble time, the solution is ¢ = const—the scalar field ¢ remains “stuck”
due to the friction that arises due to the expansion of the Universe. In the opposite
limit, where the oscillation time is much less than the Hubble time, the solution
is ¢ = v/2Acosmt/R*/? where A determines the amplitude of the oscillations. In
this limit the energy demsity p = ¢?/2 + m2¢4?/2 ~ A?m?/R® decreases as R™3:
As mentioned earlier the coherent oscillations of a massive scalar field behave like
nonrelativistic matter. More specifically, they correspond to a condensate of zero-

momentum bosons of mass m.

Starting with this approximate solution, which is valid for m > H, and by as-
suming that the Universe is ¢ dominated so that to lowest order (in H/m) R  t*/3,
we can compute the O(H/m) corrections. To zeroth order R3p = const, and the
oscillating pressure is given by

A*m? cos 2mt
P=~————pz —— = —op cos 2mit; (5)
where p = ¢p +1p and op denotes the zeroth order solution: ¢p = A?m?/R3. By using

Eq. (3b) we can solve for the first order correction to op:

1P _ sin2mit

. (6)

0P mi
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Denote the zeroth-order Hubble constant as o H, where o H? = 8w G ¢p/3. Using the

above result for 1p we can compute the first order correction to the Hubble constant:

8rG 30H
H? = (oH +,H)* = Smtrop (1 + ﬁ) = H =" Hsin2mt. (7)
3 0p 4m

The Hubble constant oscillates with angular frequency 2m and amplitude 3o H /4m.
Our linearized approach is strictly only valid for H/m < 1; however, the equations
governing the evolution of p and H, Eqs. (3) and (4), are easily integrated for arbitrary
ratio m/H. If coherent ¢ oscillations only contribute a fraction 24 of the total energy
density of the Universe, the amplitude of the Hubble constant oscillations is reduced

by a factor of Q4.

Are there any observable consequences of an oscillating Hubble constant? Yes! To
begin, we remind the reader that these “Hubble oscillations” are spatially coherent
throughout the Universe and are only oscillations in time. However, when we look
out in space we look back in time, and so any observer in the Universe will observe a
spherical wave pattern associated with the value of the Hubble constant. The distance
to a nearby object (distance much less than H~!) and the time £ when the light we
are observing today was emitted are related by: t ~ t; — d, where ¢, denotes the

present epoch. Thus, the Hubble constant inferred at distance d is

H(d) = H, (1 + ?;H° sin(e) — 2md)) , (8)

m
where Hy = 100hkmsec™® Mpc~! denotes the present (zeroth order) value of the
Hubble constant and ¢ = 2mt, is the phase of the oscillations at the current epoch.

It is interesting to write 2md as 2md = 2wd/L where the oscillation length L is

related to m by

-7 _ 20Mpc’

m m_30
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and m_zp = m/1073 eV. The amplitude of the Hubble oscillations is

.6h -3 L
3H021 x 10 ~8x107% —————,
4m ™M_ag 20h-1 Mpc

In order for the Hubble oscillations induced by the oscillating scalar field to have
a significant amplitude, the mass of the scalar must be very light indeed—a soft
boson*®€; we will return later to address the plausibility of soft bosons in the context

of modern particle theory.

Just what are the observable consequences? Since the value of the Hubble con-
stant enters in essentially every cosmological test—e.g., galaxy number count-red shift
test, luminosity-red shift test, angle-red shift test, etc.—Hubble oscillations should
manifest themselves in many places!” In order to be more specific, we need to derive

the kinematic relations that hold in the presence of Hubble oscillations.

To begin, let’s solve for the first order correction to the evolution of the cosmic

scale factor; it is found by integrating

R ;_:- [1+3m2mt}‘ 9)

Z_oH=
R 2mt

Treating the oscillating term as a small perturbation, we find

2

2/3
t 3H
R(t) = (1—,‘;) [1 - §R% (cos 2mt — cos qb)] , (10)
where subscript zero denotes the present value of a quantity and Ry = 1. Note that
the correction to R(t) is order HZ/m?. The red shift z of a galaxy that emitted the
light we see today at time ¢ is given by

to\** [ 3H?
1+2z=R(t)'~ (?) {1 + _S-R% (cos 2mt — cos 1/))] . (10)

The luminosity-red shift (or Hubble) diagram is based upon the relationship be-
tween the luminosity distance of an object, d2 = L/4xF, and its red shift: dy =
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r(1 + z), where the observer’s radial coordinate position is taken to be zero and that
of the galaxy is », £ is the luminosity of the object, and F is the observed flux. The

radial coordinate » of an object at red shift z is given by

/ o dt

r = —_—

t(z) R(t) ’

where ¢ is the time of emission. Integrating this equation and using Eq. (10), we find

the key relationship between r and 2
-1 3 H3 -1 2 3/, 3
r=Hy'|z— Smi (cos[vp — 2mHy 2] — cos )| + O(2%) + O(H3/m®), (11)

which is valid for small 2. {(We have dropped the higher order terms in z as we are
most interested in the oscillating term in the “Hubble law.”) Using Eq. (11) to

express r in terms of z, we arrive at the modified Hubble law, valid for small 2:

z=Hydy [1 + g_mlj;L (cos[p — 2mdy)] — cos ) ] + O(2%). (12)

The correction to the Hubble law (i.e., z = Hody) is periodic in space, with period
L = w/m. The amplitude is more subtle to estimate. Suppose for simplicity that
cosy = 0. An object at a distance of L/2 = w/2m has a red shift given by '

H()‘Tl'( 3Ho>
z=""(1-=—22);

2m it m

that is, the correction due to the oscillating Hubble constant is order Hy/m.

The angle distance to an object d4 is defined as d4 = D/8, where D is its physical
diameter of the object and # is the angle that the object subtends on the sky. The
angle-red shift relationship is: d4 = r/(1+2) = di/(1+ 2)*. To lowest order in z the
angle-red shift relationship is the same as the luminosity-red shift relationship, and

so Eq. (12) with the substitution d; — d4 provides the angle-red shift relationship.
Now, consider the number of galaxies per solid angle per red shift interval, dNyq/dzd$2

(number count-red shift test). Assuming that the number density of galaxies per co-
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moving volume element (= n.) is constant, the number galaxies dNgq in a solid angle
df) is given by ,
dNgg = 1, ridrdQ;

to obtain dNye/d2dQ) from this expression we must relate r to z and dr to dz—which

we can do by using Eq. (11). Doing so we find

- 3Hy . _ 31 H? _
= Hy%n. |1— Yo sinfy) — 2mHy'z] — Z;;z% (cos[yp — 2mHy'z] — cos ¢)] ,

(13)

where as before we have assumed z < 1. For small z, the usual result is dNyq;/22d2dQ =

dNgqa
z2dzdf)

H;3%n,; the lowest order correction is periodic (period L) and has an amplitude of
order 3H,/2m.

To this point we have assumed that the observer is at rest with respect to the
cosmic rest frame (defined by the cosmic microwave background radiation); our galaxy
moves with respect to the cosmic rest frame with a speed of about 2 x 10~3¢. If the
observer is moving with respect to the cosmic rest frame with velocity vp, then the
red shifts measured by this observer will differ from those measured by an observer

at rest with respect to the cosmic rest frame by
z2=2,+Vp+-n =2z, +vpcosl (zx 1),

where i is the unit vector in the direction of the galaxy whose red shift in the moving
frame is z,. If we are only interested in the periodic effects, then the transformation to
the moving frame is simple: in al previous expressions z is replaced by z, + vp cos 4,
valid for z < 1. The net effect is that the argument of all the sinusoidal terms
becomes:

% —2mHy 'z — %(6) — 2mHy 'z, (14)

where the direction dependent phase %(8) is given by

2m 6h_1 MpC vp
¢(0)—¢—Fovpcos0_¢—27r< I 5% 103 cosG).

(15)
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Due to the peculiar velocity of the observer, the apparent center of the spherical

pattern is shifted; however, the period is not changed.

The crucial assumption that underlies Hubble oscillations is that of the coherence
of the scalar field oscillations. If they do not remain spatially coherent, then, averaged
over all of space, the equation of state p = 0 will be a very good approximation, and
Hubble oscillations will not arise. While one might worry that spatial coherence
would be both difficult to arrange initially and difficult to maintain in the presence
of density inhomogeneities, these worries may not be so serious. First, the initial
spatial coherence may be “arranged” by inflation: Provided that the scalar field is
smooth in some small region at the beginning of inflation, inflation will enlarge that
region to encompass the present Hubble volume. Second, owing to the uncertainty
principle it is difficult for the field to become inhomogeneous on scales less than about
300m=' ~ 100L. The uncertainty principle implies that ApAz = mAvAz 2 1; the
deepest potential wells in the observable Universe are those of rich clusters and are
characterized by velocity dispersions of less than or of order of Ve ~ 3 X 10~3¢. Thus
the uncertainty principle precludes the collapse of soft bosons on scales smaller than
about (Vmeem)~' ~ 300m™1, or about 100L. This fact would also help to reconcile
the theoretical prejudice for 2 = 1, with the experimental reality that the fraction of
critical density contributed by material clustered on scales less than about 30 Mp;:
only contributes {230 ~ 0.2, as soft bosons would necessarily be smooth on these
scales and would not contribute to dynamical determinations of the mass density of

the Universe.

Perhaps a more important concern is whether the effects of an oscillating Hubble
constant are large enough to be observed. Since m 2 3H is required for the scalar
field to begin oscillating,? the maximum amplitude of the Hubble oscillations is only
about 24%. Of course, our analysis here is linear and nonlinear effects could increase
the amplitude of the oscillations and their effects. In any case, Hubble oscillations are
certainly novel enough to bear discussion and just as importantly have a “smoking
gun” kind of signature: A spherical wave pattern around each observer in the Uni-

verse, and a simple relationship between the Hubble oscillation length and amplitude,
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amplitude of 8 x 1073 (L/20h~* Mpc). A most interesting question is whether or not
such oscillations could have anything to do with the periodic distribution of red shifts
seen by Broadhurst et al.® in their deep (to red shift z ~ 0.5), pencil-beam survey of
the North and South Galactic Pole regions. The spatial period they infer is about
120h~! Mpc; for such a period, we would predict that the amplitude of the oscillatory
term in dNyq,/22d2dQ to be about 10%.

Finally, let us discuss the plausibility of such a scenario: Can a well motivated par-
ticle physics model lead to such a light scalar field? The idea of ultra-low mass scalar
fields has recently been a subject of very active discussion. The familiar “invisible
axion” is a natural realization of this idea,® but with a mass m, ~ Adqp/fa ~ 1078
eV that is much larger than is of interest here (f, ~ 10'? GeV is the scale of Peccei-
Quinn symmetry breaking). Note that by “naturalness” we mean the “Harvard”
definition of the late 1970’s: A Lagrangian L(u,M) with parameters 4 and M sat-
isfying p €« M is natural provided that £(0,M) corresponds to a symmetry limit
in which 4 = 0 is protected by the symmetry to all orders of perturbation theory.
For example my, < My is natural since a chiral symmetry protects m,, = 0. Set-
ting Agocp — 0 corresponds to 8,5* = T* « B(g) — 0, where S# is the dilatation
current; hence scale invariance is recovered and protects Agcp = 0. Hence, natural-
ness is essentially a symmetry principle, and may or may not have anything to do
with aesthetics. A technically natural generalization of axions and familons has been
proposed* in which my ~ mi,, ;n/f- If the fermion mass corresponds to that of a
light neutrino, mfepmion ~ m, ~ 0.01 €V, and f ~ 10'® GeV, then one obtains the
astrophysically interesting mass scale of order 10-%° eV. This idea has been exploited
as the basis of a model to generate large-scale structure® and to account for the dark

matter as coherent field oscillations.®

The oscillating Hubble constant scenario was proposed originally by Morikawa.l
Morikawa emphasizes the general non-minimally coupled case, in which the La-
grangian for @ contains a term of the form ¢$2R. He argues that the amplitude
of the resulting Hubble oscillations can be made consistent with the observations re-

ported by Broadhurst et al.® However, on the basis of the criterion of naturalness,
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we would argue that such a model is unlikely. The only way to make the mass nat-
urally as small as ~ 1073° eV is to exploit pseudo—Goldstone bosons of some kind,
yet such fields will not admit é®?R terms. We might expect induced terms of the
form ~ (m*/M3,)cos(®/f)R but these would have negligible effects. It should be
emphasized that if one demands a éP?R term with £®/M Pl having large amplitude
excursions, then one has an effective time-dependent variation in Gyewton. Oscilla-
tions of the gravitational constant sufficient to explain the Broadhurst et al.? results
may be inconsistent with the very stringent solar system limits to the time variation

of GNewton-1® We will return to this question elsewhere.

One might have hoped to make Morikawa’s model natural by identifying the field
® with Mpe?/MP1 where ¢ is the dilaton field, a field that expresses a nonlinearly
realized conformal invariance at the highest energies. The dilaton is expected to arise
in superstring theories and couples to the curvature scalar like a Brans—Dicke field.
However, the mass scale expected for the dilaton is, at the very least, given by the
trace anomaly of QCD (and probably involves higher energy scales). Thus the dilaton
mass is expected to be bounded below by a scale of order A?;,CD /mpy ~ 10711 eV, (and
is probably much heavier) and therefore is unlikely to correspond to a cosmologically

interesting scale.!!
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